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Abstract— The problem of determining of the normalization constant of a wave function describing an arbitrary type of an infinite motion 
for a one-dimensional potential is discussed.   It is shown that for the cases of the momentum or the quasi-wave number representations 
the normalization constant does not depend on the representation parameter. In contrast to these cases for the energy representation the 
normalization constant depends on the energy state value. It is proved, that regardless of the representation choice and the form of a one-
dimensional potential the normalization constant of a wave function for an arbitrary infinite motion coincides with the value of the 
normalization constant of the free motion. The connection between the normalization condition of the wave function and the magnitudes of 
the amplitudes determining the asymptotic behavior of the wave function is also established. 

Index Terms—.  one-dimensional motion, normalization problem, wave functions representations. 

——————————      ——————————  
t is well known that one of the basic concepts of quantum 
mechanics is the normalization condition for the wave func-
tion, which is important for describing the probabilistic na-

ture of displaying of certain values for the physical quantities 
characterizing the various properties of microscopic systems 
[1]. Thus, depending on a motion character, i.e. it takes place 
in a finite or an infinite area of space, the wave function must 
be normalized to unity or 𝛿 - function, respectively. The ques-
tion is how the normalization constant depends on the values 
of the constants determining the motion type or the asymptot-
ic behavior of a wave function. In this paper the detailed anal-
ysis of the normalization problem for an infinite one-
dimensional motion in an arbitrary potential field is per-
formed. The limitation for the reviewing given below is the 
assumption that in infinites the potential energy asymptotical-
ly tends to zero. 

Often, when the problem of description of a one-
dimensional quantum-mechanical motion is discussed, instead 
of an energy-depending wave function 𝜑𝐸(𝑥) in order to speci-
fy the form of the solution (the problem statement), the wave 
function as a parametric function of the momentum  φ𝑝(𝑥)   or 
quasi-wave number 𝜑𝑘(𝑥) is considered. In the general case a 
direction of a one-dimensional motion (the vector of a particle 
momentum) remains uncertain, but modules of the momen-
tum 𝑝 and quasi-wave number 𝑘 are the well-defined quanti-
ties.  

Regardless of the type of the asymptotic conditions deposit-
ing on a wave function all three representations of the wave 
function 𝜑𝐸(𝑥), 𝜑𝑝(𝑥) and 𝜑𝑘(𝑥) satisfy to the same wave 
equation; 

𝑑2𝜑𝐸,𝑝,𝑘(𝑥)

𝑑𝑥2
+ 2𝑚

ℏ2
�𝐸 − 𝑈(𝑥)�𝜑𝐸,𝑝,𝑘(𝑥) = 0,                  (1) 

where 
𝐸 = 𝑝2

2𝑚
=ℏ2𝑘2

2𝑚
             (2) 

however, the dimensionalities of these three functions are dif-
fer from each other. As it follows from Eq. (1), the wave equa-
tion determines only the coordinate dependence but it leaves 
the dimensionality of a wave function uncertain. The dimen-
sionality of a wave function should be defined from another 
condition differ from the condition according to which a wave 
function should satisfy to Eq. (1).   Indeed, in accordance with 
the normalization condition of continuous spectrum states for 
the above-mentioned types of wave functions can be written: 

∫ 𝜑𝐸(𝑥)𝜑𝐸′
∗ (𝑥)𝑑𝑥 = 𝛿(𝐸 − 𝐸′)∞

−∞   (3) 
 

∫ 𝜑𝑝(𝑥)𝜑𝑝′
∗ (𝑥)𝑑𝑥 = 𝛿(𝑝 − 𝑝′)∞

−∞   (4) 
 

∫ 𝜑𝑘(𝑥)𝜑𝑘′
∗ (𝑥)𝑑𝑥 = 𝛿(𝑘 − 𝑘′)∞

−∞   (5) 
                                               

Note that the dimensionality (further, we will mention dimen-
sionality by the quadratic brackets) of the 𝛿-function is the 
inverse of the dimensionality of its argument ([𝛿(𝑥)] = 1 [𝑥]⁄ ), 
so for the dimensionalities of the wave functions 𝜑𝐸(𝑥), 𝜑𝑝(𝑥) 
and 𝜑𝑘(𝑥) one can write: 

               [𝜑𝐸(𝑥)] = 1 �√𝐸�[√𝑥]⁄   (6) 
 

               �𝜑𝑝(𝐸)� = 1 ��𝑝�[√𝑥]⁄   (7) 
 

[𝜑𝑘(𝐸)] = 1 �√𝑘�[√𝑥]⁄   (8) 
 

As it follows from Eq. (8) since the quantity 𝑘 has the dimen-
sionality inverse of length [𝑘] = 1 [𝑥]⁄  the wave function 𝜑𝑘(𝑥) 
is a dimensionless quantity; 

[𝜑𝑘(𝑥)] = [𝑁]                                   (10) 
where 𝑁 is an arbitrary number. 

For the most common form of an infinite motion the as-
ymptotic behavior of a wave function can be written:  

 
 𝜑(𝑥) = �

𝑎 𝑒𝑥𝑝{𝑖𝑘𝑥} + 𝑏 𝑒𝑥𝑝{−𝑖𝑘𝑥}, 𝑥 → −∞,
𝑐 𝑒𝑥𝑝{𝑖𝑘𝑥} + 𝑑 𝑒𝑥𝑝{−𝑖𝑘𝑥},𝑥 → +∞.                 (11) 
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For the magnitudes 𝑘 > 0 the quantities 𝑎,𝑑 will be the am-

plitudes of waves converging to the potential and the quanti-
ties 𝑐,𝑑 will be the amplitudes of outgoing waves.  A selection 
of any two amplitudes from the four above-mentioned ampli-
tudes as originally given quantities completely determines the 
motion nature or the form of a wave function for the whole 
one-dimensional space. So, when in Eq. (11) 𝑎 = 1,𝑑 = 0 are 
chosen then the wave function corresponds to the left-
scattering problem, and when 𝑎 = 0, 𝑑 = 1 then the asymptot-
ic behavior corresponds to the right-scattering problem. As it 
follows from Eq. (11) the dimensionalities of the amplitudes 
coincide with the dimensionality of a wave function of the 
corresponding representation. Using Eq. (6)-(8) one can write 

 
[𝑎𝐸(𝑥)] = [𝑑𝐸(𝑥)] = [𝜑𝐸(𝑥)],  (12) 

 
                            �𝑎𝑝(𝑥)� = �𝑑𝑝(𝑥)� = [𝜑𝑝(𝑥)],                           (13) 
 

[𝑎𝑘(𝑥)] = [𝑑𝑘(𝑥)] = [𝜑𝑘(𝑥)].         (14) 
                                            

In accordance with Eq. (2) let us write down  
 

𝐸′ = 𝐸(𝑝′) = 𝑝′2 2𝑚⁄ = 𝐸(𝑘′) = ℏ2𝑘′2 2𝑚⁄ ,               (15) 
 

𝑝′ = 𝑝(𝐸′) = √2𝑚𝐸′ = 𝑝(𝑘′) = ℏ𝑘′,  (16) 
 

𝑘′ = 𝑘(𝑝′) = 𝑝′ ℏ⁄ = 𝑘(𝐸′) = √2𝑚𝐸′ ℏ⁄ .                      (17) 
 

Taking into account Eq. (15)-(17) and using equalities be-
tween the following three dimensionless quantities 

    
𝛿(𝐸 − 𝐸′)𝑑𝐸 = 𝛿(𝑝 − 𝑝′)𝑑𝑝 = 𝛿(𝑘 − 𝑘′)𝑑𝑘                (18) 

one can write  
𝛿(𝐸 − 𝐸′) = 𝛿(𝑝− 𝑝′)𝑑𝑝 𝑑𝐸⁄ = 𝛿(𝑘 − 𝑘′)𝑑𝑘 𝑑𝐸⁄ .             (19) 

 
By using Eq. (19) and Eq. (3)-(5) it can be shown that be-

tween the corresponding representations of the wave func-
tions normalized on a 𝛿-function the following relations take 
place:  

𝜑𝐸(𝑥) = �𝑑𝑘

𝑑𝐸
𝜑𝑘(𝑥), 𝜑𝐸(𝑥) = �𝑑𝑝

𝑑𝐸
𝜑𝑝(𝑥) ,𝜑𝑝(𝑥) = �𝑑𝑘

𝑑𝑝
𝜑𝑘(𝑥). 

(20) 
It is well known that for the case of the free motion in the 

quasi-wave number representation the wave function 𝜑𝑘(𝑥) 
having 𝛿(𝑘 − 𝑘′) normalization (see, for example, [1]) has the 
form of: 

𝜑𝑘(𝑥) = � 1

2𝜋
�

1/2
exp {𝑖𝑘𝑥},                          (21) 

 
From Eq. (20) for the functions 𝜑𝑝(𝑥) and  𝜑𝐸(𝑥) we will get 
 

𝜑𝑝(𝑥) = � 1

2𝜋ℏ
�

1
2 exp{𝑖𝑘𝑥},                            (22) 

  
                     

𝜑𝐸(𝑥) = �𝑚

2𝐸

4 � 1

2𝜋ℏ
�

1
2

exp{𝑖𝑘𝑥}.    (23) 
 

As one can see from Eq. (17) - (19) the normalization con-
stants for the functions  𝜑𝑘(𝑥) and 𝜑𝑝(𝑥) do not depend on the 
parameters of representation and are constants:1/√2𝜋  and 

1/√2𝜋ℏ, respectively. In contrast to them the normalization 
constant of the function 𝜑𝐸(𝑥)  depends on the parameter rep-
resentation, and is in power ~(𝐸)−1/4.  

It is important to note that the mentioned values of normal-
ization constants appear not only in the case of the free motion 
states. The relations between the normalization constants of 
the wave functions writing for difference representations have 
a universal form, which does not depend on a type of infinite 
motion (free motion, left or right scattering problems and so 
on) and on a shape of a one-dimensional potential. In accord-
ance with the main result of the paper [2] obtained on the base 
of so called method of converging waves (see [3-5]) the magni-
tude of the normalization constant for the quasi-wave number 
representation does not depend on the form of a scattering 
potential and it is determined by the boundary conditions im-
posed on the character of the investigated motion. So, if for the 
amplitudes of the converging waves 𝑎,𝑑  the following equali-
ty takes place; 

𝑎𝑘𝑎𝑘∗ + 𝑑𝑘𝑑𝑘
∗ = 1/2𝜋,         (24) 

 
then the wave function  𝜑𝑘(𝑥) will be normalized on 

a 𝛿(𝑘 − 𝑘′)  function (see Eq. (5)). As it follows from Eq. (20) 
and Eq. (21), for the wave functions 𝜑𝐸(𝑥), 𝜑𝑝(𝑥) the normali-
zation conditions Eq. (3), Eq. (4) will be provided if for ampli-
tudes of converging waves rewriting in the corresponding 
representations the following equalities take place; 

 
𝑎𝐸𝑎𝐸∗ + 𝑑𝐸𝑑𝐸

∗ =
1

2𝜋ℏ
�𝑚

2𝐸
,    (25) 

 
𝑎𝑝𝑎𝑝∗ + 𝑑𝑝𝑑𝑝

∗ =
1

2𝜋ℏ
.                                  (26) 

 
 It is easy to see that from Eq. (24)-(26) the following rela-

tion between the amplitudes of converging waves of different 
representations can be obtained:  

 
𝑎𝐸 = �𝑚

2𝐸

4 𝑎𝑝 = �1

ℏ
�

1/2
�𝑚

2𝐸

4 𝑎𝑘,𝑑𝐸 = �𝑚

2𝐸

4 𝑑𝑝 = �1

ℏ
�

1/2
�𝑚

2𝐸

4 𝑑𝑘,. (27)                     
 

This result has an absolutely general character and it is true 
for any asymptotic behavior of a wave function. So, for exam-
ple, as it follows from Eq. (21)-(23) for the wave function of the 
free motion when a particle moves in positive direction the 
corresponding amplitudes have the form of:  

 
𝑎𝑘 = � 1

2𝜋
�

1/2
, 𝑎𝑝 = � 1

2𝜋ℏ
�

1/2
, 𝑎𝐸 = � 1

2𝜋ℏ
�

1/2
�𝑚

2𝐸

4             (28) 
 
and  𝑑𝐸 = 𝑑𝑝 = 𝑑𝑘 = 0               

From Eq. (27)-(28) one can conclude that regardless of the 
representation choice and the potential form the normalization 
constant of a wave function for an arbitrary infinite motion 
coincides with the value of the normalization constant of the 
free motion. 

So, we have shown that for an arbitrary one dimensional 
motion an explicit connection between the boundary condition 
and the normalization condition of a wave function can be 
established. We deduced the corresponding formulas (see Eq. 
(24)-(26)) for three types of a wave function representation.  

At first glance it may seem that the presented results are of 
a purely methodological interest. However, apart from the 
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methodological interest these results are also of great practical 
importance. So, for description of evolutionary behavior of 
wave packets propagating thought a one –dimensional media 
it is very important to have a convenient basis of expansions 
consisted of normalized functions [6-10]. Particularly, we 
found the normalization constant of the wave functions de-
scribing the scattering process for an arbitrary one dimension-
al field.      
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